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Nicholas Kaldor's Stylized facts

“facts as recorded by statisticians are always subject to numerous snags and qual-
ifications, and for that reason are incapable of being summarized”

According to Kaldor economists should work from

“a stylized view of the facts [and] concentrate on broad tendencies, ignoring indi-
vidual detail”

Kaldor, 1961 p. 2
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Definitions

- EOP = equality of opportunity (free to choose from same opportunity set);
- IOP = a summary index measuring to what extent EOP is violated,;

- C = potential sources of /OP.
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JOP: ‘This is not a causal identification’

- Can we estimate the effect of circumstances?

Attempts: sibling correlation, experiments, quasi-experiments;

Partial and limited external validity;

| am not sure (even theoretically) possible for the cumulative effect of all circumstances.
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Understanding the role of circumstances and ‘choices’

This project turned out to be like peeling away layers of an onion. [...] There is
no way to separate a person from the accumulated effects of her interactions with her

circumstances, including her opportunities, because the product of those accumulated
interactions is the person.

Fishkin, 2014 p. 64
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Model assumptions (Roemer, 1998)

Outcome (y) produces same welfare for all individuals;

Agreement about a list of circumstances that should not affect the outcome (C);

Roemer suggests 'any variable outside individual control’;

In practice: any observable exogenous variable.
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What does ‘affect’ mean?

Degree of statistical association (Checchi & Peragine, 2010; Ferreira & Gignoux, 2011);

- find a sufficiently reach data source;

- I0P = I(y), where y = f(C);

interpreted as lower bound.
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A lower bound of what?

- If IOP is not causally defined IOP cannot be a lower bound;

But even if assumptions for causal interpretation hold;

Still IOP > IOP if the model is sufficiently overfitted.
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OLS-based /OP in South Africa

IOP (Gini)
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Robust /1OP

— find an approach to make comparisons across time and space meaningful,
- A candidate: “to what extent C covary with y?" — "“to what extent C can predict y?"
- 10P is still dependent on observable C;

- But we have a criterion to select f().
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Do not rush

- If IOP measurement is a prediction problem — use supervised ML!
- But depending on the data, accuracy-interpretability trade-off cab be an issue;

- Your definition of EOP may be not equality in E[y|C].
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Roemer ‘ex-post’ EOP (1998)
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Roemer ‘ex-post’ EOP (1998)
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Fleurbaey and Shokkaert health ‘fairness gap’ (2009)
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Roemerian types

- Adopting ex-post /OP and fairness gaps make natural to define roemerian types;
- Then type-specific distributions can be estimated;

- We consider two approaches from unsupervised and supervised ML;

1. latent class model (Li Donni et al., 2015)
2. tree-based methods (Zeileis, Hothorn, Hornik, 2023)

|-S E International
Inequalities Institute <

15/45



LCA ¢ Latent variable models

Manifest variables
Latent variables Continuous Categorical
Continuous Factor analysis Item response theory
Categorical Latent profile analysis( Latent class analysis )

Source: Wikipedia
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LCA assumptions

1. Individuals belonging to a given class have same probability to have a particular response
to all manifest variables;

2. Local independence: manifest variables are independently distributed conditional on
class membership.
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Correlated C (local dependence)

Occupation "High”  Occupation "Low”

Education " High” 260 140
Education " Low” 240 360

P(occupation=high | education=high) # P(occupation = High | education = low)
260/400 # 240/500
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Local independence

Type A

Occupation "High”

Occupation " Low”

Education " High"
Education " Low”

240
160

60
40

Type B

Occupation "High”

Occupation " Low”

Education " High"
Education " Low”

20
80

80
320
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LCA models

LCA assigns a probability to type membership maximizing local independence;

Fixing the number of types probabilities can be estimated by maximum likelihood;

Individuals are assignment to type based on max probability;

Number fo type selected by panalized goodness of fit (e.g. BIC).
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Latent types pros

- We all know that Roemerian types do not exist;
- Provide a criterion to select f();

- Latent types are interesting to study.
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LCA item response probabilities

Table 3: Latent type membership by mother education (Portugal -- 3 latent types)

Mother education Type 1 Type 2 Type 3

lliterate 11.50% 4.10% 84.40%
Low 74.90% 6.70% 18.40%
Medium 25.80% 71.10% 3.10%
High 0.00% 100.00% 0.00%

Source: EU-SILC, 2011

Source: Brunori, Trannoy, Guidi (2021)
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Latent types cons

- LCA minimize covariance of C, does not maximize COV/(y, C) (conservative IOP);

All categories of all C are used,;

LCA are data-espensive (the number of parameters (N) is growing with number of latent
types (L), number of circumstances (C), and number of categories of variable ¢ (R.)):

C

N=> (Re—1)(L-1)

c=1

- Penalized likelihood criteria will favour parsimonious models (conservative IOP);
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Possible developments

- Find a method to pre-select ‘useful’ C;
- Find a method to trade-off local independence and need to explain COV/(y, C)

- Explore the use of other latent variable models when some C is continuous.
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Using Latent types

- Interesting application: Carrieri, Davillas, Jones (2020) ‘A latent class approach to
inequity in health using biomarker data’, Health Economics;

- Understanding LCA: Collins and Lanza (2009) ‘Latent Class and Latent Transition
Analysis: With Applications in the Social, Behavioral, and Health Sciences’;

- Implementation in R: Linzer and Lewis (2011) ‘poLCA: An R Package for Polytomous
Variable Latent Class Analysis’, Journal of Statistical Software.

|-S E International
Inequalities Institute <

25/45




Tree-based types

- Supervised ML will directly learn about COV/(y, C) from data;

- Need to identify types — tree-based methods.
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Kyphosis after pediatric spinal surgery
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Kyphosis after pediatric spinal surgery
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Kyphosis after pediatric spinal surgery
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Conditional inference trees (Hothorn et al., 2006)

- choose a confidence level (1-a);

- Ve test the null hypothesis of independence: H® = CORR(y,c) =0, Vc € C;

- if no (adjusted) p-value < a — exit the algorithm;

- select the variable, ¢*, with the lowest p-value;

- test the discrepancy between subsamples for each possible binary partition based on c*;
- split the sample by selecting the splitting point that yields the lowest p-value;

- repeat the algorithm for each of the resulting subsample.
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Ctree-based types in Germany
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Ctree-based types in Germany
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Tree-based types

- Ctree splitting detects heterogeneous conditional expectations;
- The partition is consistent with EOP as nonpredictability (Brunori, Hufe, Mahler, 2023);

- May fail to detect violations of other EOP definitions (e.g. ex-post IOP or fairness gaps).
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Same

= o+ B1L

LSE
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Model-based trees: general approach

Select your definition of opportunity (e.g. F(y) or (Bo, 51) );

Define a set of parameters that approximate opportunity;

Test for the instability of parameters across potential subgroups;

Partition the sample when you can reject the null hypothesis of stability with sufficient
confidence.
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Model-based trees (Zeileis et al., 2023)

1. set a confidence level (1 — «);

2. fit the model in the entire sample (h = o + B1E + u);

3. perform a M-fluctuation test on the stability of the parameters depending ¢ € C;
4. If Hy is rejected a split is performed, otherwise the algorithm stops;

5. repeat 2-5 on the resulting sub-samples.
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Unfair inequality in health in UK with MOB-tree
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Ex-post IOP in South Africa with transformation tree
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Tree-based types cons: linear DGP
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Tree-based types cons: instability
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Forests

Regression tree Random forest
Source: Hothorn et al. (2018)
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Bagging trees

- Bagging trees in forest is my preferred option when EOP is defined in terms of
conditional expectations;

- Performs better, still interpretable, makes explicit the very essence of what we (do not
know) about the DGP;

- But (open issue) it dramatically reduces /OP when EOP is defined with references to
conditional distributions.
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Possible future developments (ongoing)

Modify trees to reduce their instability (Moramarco et al., 2024);

Assess the power of the empirical exercize (ibid.);

- Practical method to adjust for sample size (Andreoli and Van Kerm, 2024);

- Use ML method that obtain prediction by both binary splitting and additive models
(Annaelena Valentini today's later presentation);

- Debias /OP obtained with ML (Escanciano and Terschuur, 2023);

Introduce some structure to a flexible f() (yesterday's presentation by Francesca Subioli)!
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Possible future developments

- How robust are hour estimates to missing (C)? Should we (and how) impute?

- How should we approach increasingly available administrative and genetic data?
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